If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49t^2-4t=0
a = 49; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·49·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*49}=\frac{0}{98} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*49}=\frac{8}{98} =4/49 $
| 1/2x=7/10+7/10x | | 25/8(x)=2 | | 4(3x+2)-x=-5+1 | | x-25=1/3 | | 36=9n+3n | | 25/8x=2 | | 5x+3=- | | (2x+6)=(x+16) | | 4v=16/3 | | 3/4(f)+5=(-5) | | 1+6n-2=17 | | 9x-42x+5x=666 | | 2+9x=58 | | 2/3(a-6)=-10 | | -12x+41=-2(6x+7) | | 5x-(2x+8)=7x-48 | | 2-x+4/2=-12 | | 30+5y=6y | | 3n-8=-1n+32 | | 18=12-3/2a | | 9x+1-6x=44 | | 1-2y=-31 | | 2g+3=5g-9 | | 32-6x=24-2x | | 2(3x+5)+4x=-2(5x-3) | | 6x+12+3x+18=2(6x+12) | | 35(r-30)=26(r-21) | | .666z=-6 | | 30x-9x+22x=123 | | 21=1/4x= | | 6x^2+7x=-10 | | y+3/4=3/4 |